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Abstract

Due to the versatility of its structure, the semi-Markov process is a powerful modeling

tool used to describe complex systems. Though similar in structure to continuous time

Markov chains, semi-Markov processes allow for any transition time distribution which

enables these processes to fit a wider range of problems than the continuous time Markov

chain. While semi-Markov processes have been applied in fields as varied as biostatistics

and finance, there does not exist a theoretically-based, systematic method to determine if a

semi-Markov process accurately fits the underlying data used to create the model.

In fields such as regression and analysis of variance, the quality of the predictive

model is judged in part by the goodness of fit of the model which relates the expected

observation values with the actual observations. A similar methodology for semi-Markov

processes would provide immediate insight in the efficacy of the fitted model and would

allow competing models to be directly compared with one another.

This dissertation presents a methodology to measure the adequacy of a fitted semi-

Markov process. To this end, a technique to assess the likelihood that a data sample could

be generated by a specific semi-Markov process is developed, including a newly proposed

goodness of fit metric. This technique relies on the covariance structure of the semi-Markov

process; thus, a method to estimate the covariance structure is also proposed. The technique

is applied to real and simulated data to demonstrate the goodness of fit metric’s utility in

model validation and its ability to identify potential covariate factors within the model.
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TESTING THE ADEQUACY OF A SEMI-MARKOV PROCESS

I. Introduction

The area of stochastic processes known as multi-state modeling describes systems in

a vast array of fields, from finance and health care to game theory and reliability. Typically,

these models decompose a complex system into a series of connected states based on

observed data. Although observed data provides the basis for the model, a modeler’s

judgment also plays a substantial role in model development. The variability inherent in

observational data and the modeler’s biases may result in a potentially inadequate system

model. Other modeling arenas, such as regression and distribution fitting, utilize various

quality metrics to confirm model adequacy; an analogous technique does not exist for

general multi-state modeling.

Simple quality metrics determine the likelihood that an observed sample comes from

a specific model, as illustrated by the analysis of variance F-statistic and Pearson’s Chi-

squared goodness of fit statistic. More advanced metrics, such as R2, assess the degree

of fit between the model and the observed data. All of these metrics are based in theory,

simple to compute, and provide the modeler with immediate insight regarding the validity

of a model.

Currently, multi-state modeling efforts omit any reference to model goodness of fit [1–

3]. This is because the computational simplicity is believed to be lost due to the complexity

of the model. In reality though, certain forms of quality metrics may be applied to multi-

state models. However, past efforts have seen limited success [4] due to the subjective

nature of many of the available metrics and nuances in data collection. Additionally,

quality assessment tools often fail to provide definitive results in multi-state models due
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to data collection techniques. Specifically, censoring within data collection methods means

that actual state transition times are not observed and must be approximated, which adds

additional uncertainty in any quality metric calculations. These drawbacks result in quality

metrics losing their allure, especially when the modeler must test multiple competing

models. To be of use for multi-state models, the quality metric must be able to differentiate

between models in a quick and reliable manner.

The work of this dissertation utilizes a Chi-squared test statistic based on a model’s

covariance structure to create a goodness of fit metric for a semi-Markov process. The

metric is developed and applied to a semi-Markov process since the semi-Markov process

is a generalized class that contains any Markov process including discrete-time and

continuous-time Markov chains. This metric is used to test the adequacy of the proposed

model with respect to the observed data sample. The technique to calculate the metric

and test model adequacy incorporates a variety of nuances contained within the structure

of a semi-Markov process in order to elicit the required expectations for the metric. The

testing technique is demonstrated through a series of well-defined models. Additionally,

an application of this technique demonstrates its usefulness in model selection by deciding

whether or not potential covariate factors significantly impact the model’s performance.

This dissertation is structured into seven chapters. Following this first introductory

chapter, background information is provided in Chapter 2 to describe the multi-state model

including the semi-Markov process. Chapter 3 provides the theory for calculating the

covariance of the Markov renewal process which is a surrogate for the covariance of a semi-

Markov process. Chapter 4 presents the goodness of fit metric and its properties as well as

provides a simulation study to demonstrate the robustness of the proposed metric. Chapter

5 demonstrates how the goodness of fit metric may be used to test the model structure for

the presence of a possible covariate. Finally, Chapter 6 demonstrates the application of

2



the goodness of fit metric to examine trends in the tempo of Body Mass Index values in

childhood and conclusions are provided in Chapter 7.
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II. Background

2.1 Stochastic Processes

A stochastic process is a collection of random variables indexed on some set T . The

evolution of these random variables can be used to represent a system changing over time.

For example, let X(t) be the price of a barrel of oil at time t, then X = {X(t), t ∈ T } is a

stochastic process that describes the price evolution of a barrel of oil over time T . T is

also known as the index set. This index set can be discrete (the closing price each day) or

continuous (the instanteous price throughout the day). An actual realization of X is known

as a sample path.

Stochastic processes trace the evolution of a system as it assumes various states, s. A

state, say s1 or s2, is an observable location of the stochastic process and the state space

(S = {s1, s2, ...}) is the full set of possible states. Although S could be R, in this work

S will be limited to a discrete state space. Figure 2.1 shows a four state system with

potential transitions between states indicated by arrows. Notice the system never returns

after departing State 1 and never leaves after arriving at State 4.

Figure 2.1: Basic state model
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2.2 Markov Processes

A Markov process is a stochastic process for which the Markov property holds [5].

The Markov property is, given the entire history of the process, the conditional distribution

of a future state is only dependent on the current state [6]. The Markov property reduces

the required system memory to just the current state rather than an entire history of the

system. Instead of tracking every state visited and the time spent in every state, a Markov

process only needs to track the current system state. From a computational standpoint, this

represents a significant reduction in physical memory requirements.

Markov processes may take on many forms depending on the structure of the system.

A Markov process with a discrete state space is known as a Markov chain. A Markov chain

is fully determined by its matrix of transition probabilities from State i directly to State j

for each i and j in S . With this transition probability matrix, P, and the current state, many

features of the system can be determined, including the likelihood that the system will be in

a particular state after the next transition or after the n-th transition, how many transitions

will occur until a specific state is reached, and the amount of time until the system returns

to the current state. Although the state space is discrete, the index set for a Markov chain

can be either discrete or continuous based upon how time is measured and tracked.

This leads to the definition of a discrete time Markov chain. Let Xn denote the system

state after the n-th transition.

Definition Discrete Time Markov Chain [7] A stochastic process {Xn, n ≥ 0} with

countable state space S is a discrete time Markov chain if the following hold for all integer-

valued n ≥ 0, and for each i, j in S :

1. Xn ∈ S , and

2. P(Xn+1 = j|Xn = i, Xn−1, ..., X0) = P(Xn+1 = j|Xn = i).

Item 2 is the Markov property with respect to the discrete time Markov chain. Note that

time is not explicitly tracked in the discrete time Markov chain. In this type of process,

5



each transition is considered a single time step. In effect, the n is the number of time steps

and can be related back to the actual index set, T , for the process.

Definition Continuous Time Markov Chain [7] A stochastic process {X(t), t ≥ 0} with

countable state space S is a continuous time Markov chain if the following are satisfied by

the sequence {X0, (Xn,Yn), n ≥ 1} for all integer-valued n ≥ 0, and for each i, j in S :

P(Xn+1 = j,Yn+1 > y|Xn = i,Yn, Xn−1,Yn−1, ..., X1,Y1, X0)

= P(X1 = j,Y1 > y|X0 = i) = pi je−qiy.

In this formulation, Xn is the system state after the n-th transition, Yn is the time the system

requires to transition from Xn−1 to Xn, also known as the sojourn time, pi j is the probability

of transitioning directly from State i to State j, and qi is the exponential parameter for the

sojourn time distribution for State i such that qi =
∑

k,i qik where k is any state in S .

In a continuous time Markov chain, every transition sojourn time follows an

Exponential distribution which maintains the Markov property due to the memoryless

nature of the distribution. Further, the transition probability matrix, P, is equal to [pi j].

The typical continuous time Markov chain is formulated so that pii = 0, for all i. This

formulation eliminates immediate transitions back to the current state which simplifies

moment calculations. If a system does allow self transitions, additional states can be added

in order to represent the self transitions without altering the performance of the system.

Often, the qi j’s are placed in a matrix Q = [qi j] which is known as the generator matrix,

where qii = −
∑

k,i qik = −qi. As a result, the row sums in Q are equal to 0. A continuous

time Markov chain is fully described by Q.

The continuous time Markov chain construct is restricted to modeling sojourn times

using exponential distributions. To allow any sojourn time distribution, more complex

models, such as a semi-Markov process, must be used. The semi-Markov process was

originally defined by Lévy [8], Takács [9], and Smith [10] and further refined by Pyke [11].
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Definition Semi-Markov Process [7] A stochastic process {X(t), t ≥ 0} with countable

state space S is a semi-Markov process if the sequence {X0, (Xn,Yn), n ≥ 1} satisfies the

following for all integer-valued n ≥ 0, and for each i, j in S :

P(Xn+1 = j,Yn+1 ≤ y|Xn = i,Yn, Xn−1,Yn−1, ..., X1,Y1, X0)

= P(X1 = j,Y1 ≤ y|X0 = i) = Gi j(y).

Here, Xn and Yn have the same definition as a continuous time Markov chain, and

Gi j = pi jFi j(y),

which is the probability of transitioning from State i directly to State j (pi j) times the

cumulative distribution function of the sojourn time distribution between States i and j

(Fi j(y)). The semi-Markov process kernel matrix is given by G(y) = [Gi j(y)] for i, j in

S , y ≥ 0.

As the formal definition implies, the semi-Markov process is similar to the continuous

time Markov chain. The semi-Markov process consists of a transition probability matrix

and distributions for the sojourn time between transitions. However, by relaxing the

exponential sojourn distribution requirement, the Markov property no longer applies at

every time t, but only at the actual transition times [5]. For example, suppose a system

transitions into State 1 at time t and will transition into State 2 at some time t + s. If

the system was a continuous time Markov chain, the transition time would follow an

Exponential(λ) distribution and for any time t + i, i < s, the expected transition time would

be λ. On the other hand, if the system was a semi-Markov process, the transition time

would follow some general distribution that may not adhere to the memoryless property,

and the expected transition time would not be the same for any time t + i, i < s. Therefore,

the semi-Markov process must track the history between transitions by maintaining the

time since the last transition.

The semi-Markov process construct is useful in providing added fidelity to real world

systems because of the flexibility in choosing sojourn distributions. Although semi-Markov
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processes are commonly associated with reliability and survival analyses [12], they have

also been applied to a variety of problems in areas such as insurance [2], biology [13],

finance [1], and computer science [14]. The basic approach to modeling with a semi-

Markov process from observed data is the following:

1. Define the state space, S .

2. Estimate the transition probability distribution matrix, P.

3. Estimate the cumulative distribution functions of the sojourn times for F.

As a semi-Markov process evolves over time, the number of visits to each state forms

a Markov renewal process as shown in Pyke [11].

Definition Markov Renewal Process [7] A process Ñ is called a Markov renewal process,

if the vector Ñ = {Ñ(t) = [N j(t)], t ≥ 0, for all j in S },

where N j(t) records the number of visits the system has made to a State j at time t given an

initial state at time 0. Figure 2.2 illustrates the relationship between semi-Markov processes

and Markov renewal processes by showing the transitions for the semi-Markov process

on the left and the counting process for State 3 on the right. States 1, 2, and 4 have

similar Markov renewal process graphs. While the semi-Markov process tracks a single

state occupancy value, i.e. the system is currently in State 4, the Markov renewal process

tracks the number of visits to each of the S states. The link between the semi-Markov

process and the Markov renewal process is exploited in the creation of the goodness of fit

metric in Chapter 4 as the metric calculations are performed on the Markov renewal process

instead of the actual semi-Markov process.

The Markov renewal process has a well-defined expectation. As illustrated in Pyke

[15], the expected count in the Laplace domain at a fixed for each state is

L(E[Ñ(t)]) = (I − q(t))−1 q(t), (2.1)

8



Figure 2.2: Semi-Markov process and related Markov renewal process for State 3

where q(t) = P ◦ f(t), ◦ is the Hadamard product of two matrices, and f is a matrix of

probability density functions that correspond to F. For an observed semi-Markov process,

the corresponding Markov renewal process, Ñ, has an expectation, Λ̃ =E[Ñ j], for all j in S .

The vector value M̃ = Ñ − Λ̃ represents the unexplained variation or error of the Markov

renewal process which forms a Martingale.

A martingale, M(t), is a stochastic process such that E[M(t)] < ∞ for all t and

E[M(t)|M(s)] = M(s) for s < t. Random walks and classical Brownian motion are two

common examples of martingales. Submartingales and supermartingales are two extended

classes of martingales. They are both stochastic processes with E[M(t)] < ∞, ∀ t,

but a submartingale has E[M(t)|M(s)] ≥ M(s), s < t, while a supermartingale has

E[M(t)|M(s)] ≤ M(s), s < t. A true martingale is, in fact, a special case of both a

submartingale and a supermartingale. Martingales, submartingales, and supermartingales

all belong to a larger class called semimartingales [16].

2.3 Semi-Markov Process Diagnostics

In most modeling realms, diagnostic tools are used to assess the model fit with

respect to observed data. For multi-state models, including semi-Markov processes, model

diagnostics are underdeveloped when compared with other areas such as linear modeling.

While a variety of diagnostic tools have been developed, the majority only work with very
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specific types of data and do not provide a clear metric for whether or not the model truly fits

the data. Titman and Sharples [4] provide a comprehensive review of the various techniques

for diagnosing model fit in multi-state models. Their review includes the shortcomings of

most diagnostic tools with respect to panel-observed medical data.

Of the diagnostic tools reviewed, prevalence counts and Chi-squared goodness of fit

metrics show promise in assessing model fit but do not satisfy the requirements of a formal

diagnostic test. Prevalence counts [17] compare the number of times a state is observed

with the number of expected observations of the state for a series of fixed time. The

comparison uses the metric

Ht =
(Ot − Et)2

Et
, (2.2)

where O is the observed count and E is the expected count. Large values of H indicate poor

model fit, but prevalence counts cannot formally assess model fit because the distribution

of H is unknown. Under a balanced observation scheme, meaning the observations occur

at regular, set intervals,

H =
∑

t

n∑
i=1

n∑
j=1

(Oti j − Eti j)2

Eti j
(2.3)

follows a Chi-squared distribution where t is the set of observation times, i is the occupied

state at t, and j is the occupied state at t + 1 [18]. Unfortunately, balanced observation

schemes are rarely attained in data collection. While irregularly observed data can be tested

with Equation 2.3 [19], the resulting statistic does not consistently follow the Chi-squared

distribution in all cases.

The two metrics in Equations 2.2 and 2.3 are applications of the generalized Pearson

Chi-squared test often used for assessing goodness of fit [20]. The test statistic is created

by grouping the data into a series of n bins, then computing the following value:

χ2 =

n∑
i=1

(Oi − Ei)2

Ei
, (2.4)

where O is the number of observed instances in bin i and E is the expected number of

instances in bin i. The statistic follows a Chi-squared distribution with n − p degrees

10



of freedom where p is the number of estimated parameters plus 1. Structural equation

modeling uses the upper diagonal of a covariance matrix such that

χ2 =

n∑
i=1

n∑
j=i

(Oi j − Ei j)2

Ei j
, (2.5)

where Oi j and Ei j are the observed and expected covariances between States i and j

respectively [21]. This statistic follows a Chi-squared distribution with 1
2n(n + 1) degrees

of freedom.

The lack of a true formal test for multi-state models, including semi-Markov

processes, motivates the development of the goodness of fit metric in following

chapters. This metric builds off the previous attempts outlined in Equations 2.2-2.5 while

incorporating the inherent structure of the semi-Markov process and its related Markov

renewal process. The next chapter develops the covariance structure for a Markov renewal

process as a surrogate for the semi-Markov process covariance.
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III. The Covariance of a Markov Renewal Process

The Markov renewal process Ñ(t), defined in Section 2.2, is represented by a vector

containing a count of the number of transitions into each of the n states at time t. A

transition probability matrix, P, and a sojourn time distribution matrix, F, uniquely define

a specific Markov renewal process. While the moments of the Markov renewal process

are well defined, see Appendix A, there is no explicit formulation for the covariance

between the state counts. This covariance, Σi j, describes how the counts of States i and

j within the Markov renewal process change together, or co-vary, and can be expressed as

a function of the correlation between the states and the individual variances of the states.

Traditionally, the covariance is used in goodness of fit testing and will be required for the

metric developed in Chapter 4. This chapter describes how to compute the covariance for

a Markov renewal process and illustrates the computation using a notional semi-Markov

process.

3.1 Calculating the Markov Renewal Process Covariance

Let Ñ(t) be a column vector of state counts, Λ̃(t) be a column vector of expected state

counts, and M̃(t) be a column vector of state Martingales at time t as defined in Chapter 2.

The covariance between state counts is then given by:

Σ[Ñ(t)] = Cov[Ñ(t), Ñ(t)] = E[(Ñ(t) − E[Ñ(t)])(Ñ(t) − E[Ñ(t)])′]

= E[(Ñ(t) − Λ̃(t))(Ñ(t) − Λ̃(t))′] = E[M̃(t)M̃(t)′] (3.1)

12



= E



M1(t)2 M1(t)M2(t) ... M1(t)Mn(t)

M1(t)M2(t) M2(t)2 ... M2(t)Mn(t)
...

. . .
...

M1(t)Mn(t) M2(t)Mn(t) ... Mn(t)2



=



E[M1(t)2] E[M1(t)M2(t)] ... E[M1(t)Mn(t)]

E[M1(t)M2(t)] E[M2(t)2] ... E[M2(t)Mn(t)]
...

. . .
...

E[M1(t)Mn(t)] E[M2(t)Mn(t)] ... E[Mn(t)2]



=



Var[N1(t)] E[M1(t)M2(t)] ... E[M1(t)Mn(t)]

E[M1(t)M2(t)] Var[N2(t)] ... E[M2(t)Mn(t)]
...

. . .
...

E[M1(t)Mn(t)] E[M2(t)Mn(t)] ... Var[Nn(t)]


.

Thus the expectations of the product of two random variables, E[Mi(t)M j(t)], comprise

the off-diagonal portions of the Markov renewal process covariance matrix. While the

variance of Ñ(t) has a solution in the Laplace domain (Appendix A), E[Mi(t)M j(t)] does

not at this time.

Although Σ(t) cannot currently be calculated directly, simulation will provide a

reasonable approximation. This simulation involves collecting N iterations of a semi-

Markov process out to a target time t and calculating the Markov renewal processes, Ñi(t)

where i goes from 1 to N. The simulated covariance for the Markov renewal process is then

computed as:

Σ̂(t) =
1

N − 1

N∑
l=1

(Ñl(t) − E[Ñ(t)])(Ñl(t) − E[Ñ(t)])T (3.2)

based on the covariance calculation for a sample [22]. For a given semi-Markov process

that does not allow self transitions, E[Ñ(t)] of the related Markov renewal process [11] is a
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constant based on t. In the Laplace domain,

L(E[Ñ(t)|X0 = i]) =
[
(I − q)−1q

]
,i
, (3.3)

where X0 is the initial system state, q = P ◦ f(t) at each t, and f is a matrix of probability

density functions that correspond to F [15]. An Euler inversion technique returns the time

domain expected value,

E[Ñ(t)|X0 = i] =

[
2eat

π

∫ ∞

0
Re (L(E[a + iu])) cos(ut) du

]
,i
, (3.4)

where a is a point such that L(E[a]) is continuous to the right and Re(L(E[a + iu])) is the

real portion of the complex L(E[a + iu]) [23]. This integral can be calculated numerically

using a Fourier-series summation. Thus only the number of iterations, N, and the time, t,

must be selected by the user to estimate the simulated covariance. The lower bounds on

both of these parameters depend on the semi-Markov process being modeled.

First, consider a four-state semi-Markov process with a probability transition matrix

P =



p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


(3.5)

and a sojourn distribution matrix of

F =



F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44


. (3.6)

Figure 3.1 illustrates the generic semi-Markov process defined by P and F from

Equations 3.5 and 3.6. To compute the covariance matrix of this fully connected semi-
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Markov process, simulate from the model as follows:

Ñ =



0

0
...

0


S×1

and Σ[Ñ(t)] =



0 0 ... 0

0 0 ... 0
...

. . .
...

0 0 ... 0


S×S

;

T = 0 and i = 0;

Set t to the desired length of the simulation;

Set N to the desired number of simulation iterations;

Calculate E[Ñ(t)] using Equation 3.4;

while i < N do
Select an initial state, S c, based on the starting distribution of the system (i.e.

the probability that the systems begins in a particular start);

while T < t do

Draw a random variable, X1 ∼Uniform(0,1);

Use P to find the next state, S n, based on X1 and S c;

Draw a random variable, X2 ∼Uniform(0,1);

Find the transition time, Tn, to S n by making a random draw from FS cS n

based on X2;

T = T + Tn;

if T <= t then

S c = S n;

ÑS n = ÑS n + 1;

end

end

Σ[Ñ(t)] = Σ[Ñ(t)] + 1
N−1 (Ñ − E[Ñ(t)])(Ñ − E[Ñ(t)])′;

end
Algorithm 1: Covariance Simulation
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At this point, Ñ equals the total number of times each state was visited during the

simulation prior to t.

Figure 3.1: Fully connected four state model with self transitions

3.2 The Covariance of the Sample Problem

The Covariance Simulation is demonstrated for a sample problem using assumed

values. This process does not allow instantaneous transitions back to the current state,

State 1 cannot transition directly to State 3, and State 2 cannot transition directly to State

4. Let

P =



0 0.75 0 0.25

0.5 0 0.5 0

0.25 0.45 0 0.3

0.15 0.35 0.5 0


(3.7)

and

F =



0 Γ(2, 2) 0 Γ(2, 2)

Γ(2, 1) 0 Γ(0.5, 4) 0

Γ(0.5, 1) Γ(0.5, 4) 0 Γ(2, 2)

Γ(0.5, 4) Γ(2, 2) Γ(2, 1) 0


, (3.8)
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where

Γ(α, β) =

∫ x

0

1
Γ(α)βα

uα−1e−
u
β du. (3.9)

Running N =10,000 iterations of the Covariance Simulation at t =1,000 time units results

in the following estimated covariance:

Σ̂[Ñ(1000)] =



59.297 38.523 −9.579 −6.323

38.523 75.407 26.323 −15.108

−9.579 26.323 70.904 18.971

−6.323 −15.108 18.971 37.058


. (3.10)

The true variance of the Markov renewal process can be calculated using the equation for

the Var∗[Ñ(t)] found in Appendix A and

Var[Ñ(t)] =
2eat

π

∫ ∞

0
Re(Var∗[a + iu]) cos(ut) du. (3.11)

Based on the semi-Markov process variances, the true Σ[Ñ(1000)] diagonal values are

59.2, 75.5, 70.8, 37.1 respectively. The estimates produced by the Covariance Simulation

are almost identical to the true values.

The choice of N will affect the estimate of Σ(t). Increasing the number of iterations

used to estimate the covariance matrix will result in a closer approximation, but at the

cost of increased computational time. To illustrate the effect of the number of iterations,

the covariance estimate of the sample problem is computed at t=1,000 time units using

N =100, 500, 1,000, 5,000, 10,000, 50,000, and 100,000 iterations, repeated across

R=1,000 samples. The average estimate of the covariance matrix and its corresponding

95% confidence interval around each Σ̂i j value was computed. The results for the various

iteration sizes are as follows:
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Σ̂[Ñ(1, 000)] and (95% confidence interval) based on N=100 iterations =

59.8(47.2, 74.1) 38.7(26.8, 50.7) −9.9(−20.7, 1.3) −6.4(−14.5, 1.2)

38.7(26.8, 50.7) 76.0(60.1, 94.3) 26.6(14.3, 39.7) −15.1(−24.0,−6.5)

−9.9(−20.7, 1.3) 26.6(14.3, 39.7) 71.7(55.6, 88.4) 19.2(10.8, 28.1)

−6.4(−14.5, 1.2) −15.1(−24.0,−6.5) 19.2(10.8, 28.1) 37.3(29.1, 46.0)


(3.12)

Σ̂[Ñ(1, 000)] and (95% confidence interval) based on N=500 iterations =

59.1(52.7, 65.5) 38.6(33.1, 44.5) −9.6(−14.4,−4.4) −6.4(−10.1,−3.2)

38.6(33.1, 44.5) 75.6(67.8, 83.9) 26.2(20.5, 31.8) −15.3(−19.7,−11.1)

−9.6(−14.4,−4.4) 26.2(20.5, 31.8) 70.9(64.0, 78.3) 19.0(15.0, 23.1)

−6.4(−10.1,−3.2) −15.3(−19.7,−11.1) 19.0(15.0, 23.1) 37.2(33.3, 41.3)


Σ̂[Ñ(1, 000)] and (95% confidence interval) based on N=1,000 iterations =

59.2(54.9, 63.8) 38.6(34.6, 42.5) −9.7(−13.1,−6.4) −6.4(−8.9,−4.0)

38.6(34.6, 42.5) 75.6(70.2, 81.1) 26.2(22.4, 29.9) −15.3(−18.2,−12.4)

−9.7(−13.1,−6.4) 26.2(22.4, 29.9) 70.9(65.8, 76.0) 19.0(16.1, 21.7)

−6.4(−8.9,−4.0) −15.3(−18.2,−12.4) 19.0(16.1, 21.7) 37.2(34.5, 40.1)


Σ̂[Ñ(1, 000)] and (95% confidence interval) based on N=5,000 iterations =

59.1(57.3, 61.0) 38.5(36.8, 40.2) −9.7(−11.1,−8.2) −6.4(−7.5,−5.3)

38.5(36.8, 40.2) 75.5(73.2, 78.0) 26.2(24.4, 27.9) −15.3(−16.5,−14.0)

−9.7(−11.1,−8.2) 26.2(24.4, 27.9) 70.9(68.5, 73.2) 19.0(17.8, 20.2)

−6.4(−7.5,−5.3) −15.3(−16.5,−14.0) 19.0(17.8, 20.2) 37.2(35.9, 38.4)


Σ̂[Ñ(1, 000)] and (95% confidence interval) based on N=10,000 iterations =

59.1(57.9, 60.4) 38.5(37.3, 39.7) −9.6(−10.7,−8.5) −6.4(−7.2,−5.7)

38.5(37.3, 39.7) 75.5(73.7, 77.3) 26.2(25.0, 27.5) −15.3(−16.2,−14.4)

−9.6(−10.7,−8.5) 26.2(25.0, 27.5) 70.9(69.3, 72.5) 18.9(18.1, 19.8)

−6.4(−7.2,−5.7) −15.3(−16.2,−14.4) 18.9(18.1, 19.8) 37.2(36.3, 38.0)
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Σ̂[Ñ(1, 000)] and (95% confidence interval) based on N=50,000 iterations =

59.2(58.6, 59.7) 38.5(38.0, 39.1) −9.7(−10.1,−9.2) −6.4(−6.8,−6.1)

38.5(38.0, 39.1) 75.5(74.7, 76.3) 26.2(25.6, 26.8) −15.3(−15.7,−14.9)

−9.7(−10.1,−9.2) 26.2(25.6, 26.8) 70.9(70.1, 71.6) 18.9(18.5, 19.3)

−6.4(−6.8,−6.1) −15.3(−15.7,−14.9) 18.9(18.5, 19.3) 37.2(36.8, 37.5)


Σ̂[Ñ(1, 000)] and (95% confidence interval) based on N=100,000 iterations =

59.2(58.7, 59.6) 38.5(38.1, 38.9) −9.6(−10.0,−9.3) −6.4(−6.6,−6.2)

38.5(38.1, 38.9) 75.5(74.9, 76.1) 26.2(25.8, 26.6) −15.3(−15.5,−15.0)

−9.6(−10.0,−9.3) 26.2(25.8, 26.6) 70.9(70.3, 71.4) 18.9(18.7, 19.2)

−6.4(−6.6,−6.2) −15.3(−15.5,−15.0) 18.9(18.7, 19.2) 37.2(36.9, 37.4)


From the covariance estimates, the average diagonal values mirror the true variance

values with 500 iterations, albeit with wide 95% confidence intervals of 10 units which

indicates that a single set of 500 interations may not provide a good estimate of Σ[Ñ(t)].

Figure 3.2 shows the decreasing confidence interval sizes as the number of iterations

increase. With 50,000 iterations, the confidence intervals drop to 1 unit. In this scenario,

it takes the same amount of time to estimate the covariance with a single set of 50,000

iterations as it does to average 1,000 samples of 500 iterations each. However, the later

method will provide a more accurate estimate of the true covariance matrix since it relies

on averaging a series of estimates rather than using in single point estimate.

While t is dictated by the observed data sample, the minimum semi-Markov process

runtime required for accurate covariance estimates depends largely on the particular model

and how quickly it reaches a steady state on average. For instance, a model that averages 10

time units before the first transition cannot have an accurate covariance estimate for Ñ(5)

because the Markov renewal process counts will be highly dependent on the initial states.

Meanwhile a small model that averages 0.1 time units between transitions can have an
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Figure 3.2: State-to-State 95% confidence interval widths for model covariance

an accurate covariance estimate for Ñ(5) because the system will have enough transitions

to overcome the effect of the initial state. To illustrate, the correlation matrix is used to

normalize the covariance estimates across time. The correlation matrix is calculated by

Corri j[Ñ(t)] =
Σ̂i j[Ñ(t)]√

Σii[Ñ(t)]Σ j j[Ñ(t)]
. (3.13)
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Matrices of the average correlation with 95% confidence intervals around each Corri j

value for Ñ(1), Ñ(20), Ñ(50), and Ñ(100) follow:

Corr[Ñ(1)] and (95% confidence interval) =

1(0.89, 1.1) −0.05(−0.11, 0.01) 0.02(−0.03, 0.08) 0(−0.05, 0.06)

−0.05(−0.11, 0.01) 1(0.85, 1.15) 0.33(0.24, 0.44) −0.05(−0.09,−0.02)

0.02(−0.03, 0.08) 0.33(0.24, 0.44) 1(0.86, 1.14) 0.03(−0.01, 0.09)

0(−0.05, 0.06) −0.05(−0.09,−0.02) 0.03(−0.01, 0.09) 1(0.6, 1.44)


(3.14)

Corr[Ñ(20)] and (95% confidence interval) =

1(0.93, 1.08) 0.5(0.44, 0.56) −0.12(−0.17,−0.07) −0.12(−0.17,−0.07)

0.5(0.44, 0.56) 1(0.92, 1.08) 0.37(0.31, 0.44) −0.28(−0.33,−0.23)

−0.12(−0.17,−0.07) 0.37(0.31, 0.44) 1(0.93, 1.08) 0.32(0.27, 0.38)

−0.12(−0.17,−0.07) −0.28(−0.33,−0.23) 0.32(0.27, 0.38) 1(0.93, 1.08)


Corr[Ñ(50)] and (95% confidence interval) =

1(0.93, 1.07) 0.55(0.49, 0.61) −0.14(−0.19,−0.09) −0.13(−0.18,−0.08)

0.55(0.49, 0.61) 1(0.93, 1.08) 0.36(0.31, 0.42) −0.28(−0.34,−0.23)

−0.14(−0.19,−0.09) 0.36(0.31, 0.42) 1(0.93, 1.08) 0.35(0.3, 0.41)

−0.13(−0.18,−0.08) −0.28(−0.34,−0.23) 0.35(0.3, 0.41) 1(0.93, 1.08)


Corr[Ñ(100)] and (95% confidence interval) =

1(0.93, 1.07) 0.56(0.5, 0.63) −0.14(−0.2,−0.09) −0.13(−0.19,−0.08)

0.56(0.5, 0.63) 1(0.93, 1.08) 0.36(0.3, 0.42) −0.29(−0.34,−0.24)

−0.14(−0.2,−0.09) 0.36(0.3, 0.42) 1(0.93, 1.07) 0.36(0.31, 0.42)

−0.13(−0.19,−0.08) −0.29(−0.34,−0.24) 0.36(0.31, 0.42) 1(0.93, 1.08)


.

By 50 time units, the average correlation matrix stabilizes and does not change as t

increases; although, the confidence interval widths can improve slightly at higher t values,

see Figure 3.3. The correlation matrix for Ñ(20) approaches the correlation matrix for

Ñ(50). Meanwhile, the correlation matrix for Ñ(1) provides a poor estimate with respect

to the correlation matrices at larger t values. The underlying reason that the correlation

matrix requires time to stabilize is due to the number of transitions that occur in a given
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time. The particular model for the sample problem only has 0.37 expected transitions at

t = 1, 7.44 expected transitions at t = 20, and 18.67 expected transitions at t = 50. Based

on the testing in this example, t should be set so that the number of expected transitions is

at least greater than twice the number of model states.

Figure 3.3: State-to-State 95% confidence interval widths for model correlation

Using Algorithm 1, the covariance of a Markov renewal process can be reasonably

estimated. Assuming the data sample dictates the maximum value of t, the modeler is only

required to specify the number of simulation iterations, N. Using the estimate of the model

covariance, the goodness of fit of the theorized semi-Markov process with respect to the

observed data sample can be determined.
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IV. Goodness of Fit Metrics in Semi-Markov Processes

4.1 The Goodness of Fit Metric

The basic premise behind a goodness of fit metric is to compare observed data points

with their expectations. When the two values are similar, the data is said to have a close fit

with the model. In the case of a semi-Markov process, the observed process value at a time,

t, is the state of the system at t, while the expected process value is the average state of the

system at t. For a fixed time, t, a semi-Markov process only has one comparison available,

namely the actual occupied state versus the expected occupied state. This lone comparison

does not provide enough information to determine the level of similarity between the

expected and observed values, especially when the expected occupied state is constant

once the model reaches steady-state.

Consider a four state semi-Markov process that, on average, spends 40% of its time in

State 1, 10% in State 2, 10% in State 3, and 40% in State 4. The long run expected value

for the semi-Markov process would be 2.5 which is not an actual state and is the furthest

possible value from the two most commonly occuring states in the system. In this scenario,

80% of the time the absolute value of the difference between expected and observed values

is 1.5 and 20% of the time the absolute value is 0.5. Simply reordering the states by

swapping State 1 with State 2 and State 3 with State 4 would maintain the expectation of

2.5, but the absolute value of the difference between expected and observed values would

become 0.5 for 80% of the time and 1.5 for the remaining 20% of the time. This arbitrary

change would result in different model fit estimates for two equivalent models.

On the other hand, as discussed in Section 2.2, the semi-Markov process possesses an

underlying Markov renewal process that contains enough information to determine the level

of similarity between the observed data and the model. At t, the observed Markov renewal

process is a vector of the number of visits to each individual state. The corresponding
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expected number of visits to each state can be calculated in the transform domain using the

generating function, Ψz, defined in Pyke [15] as follows:

Ψz = 1 − (1 − z)(I − q)−1q[zI + (1 − z) d{(I − q)−1}]−1. (4.1)

Appendix A shows the full derivation of the expected value and the variance for a Markov

renewal process in the transform domain based on Ψz. The time domain expected value and

variance are calculated via a Laplace transform inversion using Equations 3.4 and 3.11.

Once a proposed semi-Markov process is fit to observed data, a sample covariance

matrix may be calculated from the observed and expected values of the corresponding

Markov renewal process. The covariance matrix cannot be estimated using Equation 3.2

because there is only one Ñ(t) vector value for any given t. Instead, the sample covariance

calculation involves finding the expected Markov renewal process counts at every transition

time during the observed data run. These expected counts are subtracted from the actual

state counts at their respective times. Assuming the semi-Markov process contains n states

and with N observed transitions, the result is a series of N vectors, each of length n. Then

the covariance of the Markov renewal process at tN is

Σ(tN) =
1

N − 1

N∑
k=1

(O(tk) − E(tk))(O(tk) − E(tk))′, (4.2)

where Oi(tk) is the observed count and Ei(tk) is the expected count of State i at the k-th

transition time. Because the variances are time dependent, the covariance of the Markov

renewal process is also time dependent. Traditional goodness of fit testing based on

covariance matrices is not time dependent and results in a goodness of fit metric, GoF,

as follows:

GoF =

n∑
i=1

n∑
j=i

(O(Σi j) − E(Σi j))2

|E(Σi j)|
, (4.3)

which follows a Chi-squared distribution with ν = 1
2n(n + 1) degrees of freedom. However,

the time dependency of the Markov renewal process alters the GoF equation slightly so
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that

GoF(t) =

n∑
i=1

n∑
j=i

(O(Σi j(t)) − E(Σi j(t)))2

|E(Σi j(t))|
. (4.4)

While this seems like a very minor change, as Section 4.3 will show, the inclusion of time

has major ramifications for the GoF(t) distribution.

4.2 Baseline Model

A baseline semi-Markov process from the sample problem of Section 3.2 will be used

to illustrate the behavior of the GoF(t) in Equation 4.4. Recall that the baseline semi-

Markov process consisted of four states that are nearly fully connected. A visualization

of the baseline semi-Markov process appears in Figure 4.1. The baseline semi-Markov

process was defined by the transition probability matrix

P =



0 0.75 0 0.25

0.5 0 0.5 0

0.25 0.45 0 0.3

0.15 0.35 0.5 0


(4.5)

and a sojourn distribution matrix of

F =



0 Γ(2, 2) 0 Γ(2, 2)

Γ(2, 1) 0 Γ(0.5, 4) 0

Γ(0.5, 1) Γ(0.5, 4) 0 Γ(2, 2)

Γ(0.5, 4) Γ(2, 2) Γ(2, 1) 0


, (4.6)

where

Γ(α, β) =

∫ x

0

1
Γ(α)βα

uα−1e−
u
β du. (4.7)

The result is a baseline kernel matrix of

G(t) =



0 0.1875te−
t
2 0 0.0625te−

t
2

0.5te−t 0 1.7725t−0.5e−
t
4 0

0.8862t−0.5e−t 1.5952t−0.5e−
t
4 0 0.075te−

t
2

0.5317t−0.5e−
t
4 0.0875te−

t
2 0.5te−t 0


. (4.8)
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Figure 4.1: The baseline semi-Markov process connected graph

Using the baseline semi-Markov process, the covariance matrix of the related Markov

renewal process at time t is calculated as

Σ[Ñ(t)] =



Var(Ñ1(t)) Cov(Ñ1(t)Ñ2(t)) Cov(Ñ1(t)Ñ3(t)) Cov(Ñ1(t)Ñ4(t))

Cov(Ñ2(t)Ñ1(t)) Var(Ñ2(t)) Cov(Ñ2(t)Ñ3(t)) Cov(Ñ2(t)Ñ4(t))

Cov(Ñ3(t)Ñ1(t)) Cov(Ñ3(t)Ñ2(t)) Var(Ñ3(t)) Cov(Ñ3(t)Ñ4(t))

Cov(Ñ4(t)Ñ1(t)) Cov(Ñ4(t)Ñ2(t)) Cov(Ñ4(t)Ñ3(t)) Var(Ñ4(t))


.

(4.9)

Based on Equation 3.1, Σ[Ñ(t)] = [E[Mi(t)M j(t)]] = [Cov[Ni(t)N j(t)]] = [E[(Ni(t) −

E[Ni(t)])(N j(t) − E[N j(t)])]] which can be simulated. Thus, the resulting GoF(t) metric

for a sample run of the baseline model is

GoF(t) =

4∑
i=1

4∑
j=i

(O(Σi j(t)) − E(Σi j(t)))2

|E(Σi j(t))|
. (4.10)

Since there are ten elements along the upper diagonal of each matrix used in the GoF(t)

calculation, the initial expectation is for the GoF(t) to follow a Chi-squared distribution
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with nine degrees of freedom. However, the inclusion of the time aspect actually results in

the distribution of GoF(t) more closely following a transformed Chi-squared distribution.

4.3 Goodness of Fit Metric Distribution

The distribution of GoF(t) is easily observed through simulation. The simulation

involves collecting a sample run of the baseline model out to time t. For each transition, k,

from time 0 to t, the Markov renewal process count Ñ(tk) and the E[Ñ(tk)] are calculated,

where tk is the time of the k-th transition. The observed covariance between States i and j

for the sample run becomes

O(Σi j(t))) =
1

k − 1

k∑
l=1

(Ni(tl) − E(Ni(tl))(N j(tl) − E(N j(tl)). (4.11)

The expected covariance matrix is calculated through simulation as described in Section

3.1. The GoF(t) metric is found via Equation 4.10.

Figure 4.2 illustrates the distribution of GoF(t) for the baseline model at t=50 after

collecting 10,000 samples. As a point of reference, the Chi-squared distribution with 9

degrees of freedom also appears on the graph. While the metric distribution and theoretical

distribution are similarly shaped, the metric definitely does not follow a Chi-squared

distribution with 9 degrees of freedom due to the shift along the x-axis. In addition,

the distribution of the metric changes over time as illustrated in Figure 4.3 which has

completely different x-axes in each portion of the figure, attributable to the changing

distribution.

Although the GoF(t) metric distribution differs for the various runtimes by shifting

along the x-axis, the shapes of the distributions follow a general pattern. Figure 4.4

illustrates the upper and lower 95% confidence interval cutoffs, means, and medians for the

metric distributions at various runtimes. All four measures appear linear with respect to the

model runtime, clearly demonstrating the distribution shift with respect to time. Since the

27



Figure 4.2: GoF(t) distribution for the baseline model at time 50 after 10,000 iterations

GoF(t) distribution does not follow a true Chi-squared distribution, the testing in Chapters

4-6 utilize simulation in place of a theoretical distribution to evaluate models.

4.4 GoF(t) Metric Sensitivity

The ability of the GoF(t) metric to distinguish between changes in the model is also

demonstrated through simulation. This sensitivity testing involves collecting data from a

similar, known model and treating it as if it came from the target model. To accomplish

the sensitivity testing, a simulation from an altered version of the baseline model, B, is run,

where at least one value in P or at least one sojourn distribution has been changed. The
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Figure 4.3: GoF(t) distribution at various times after 10,000 iterations

altered model is called the test model, T . Recall that a semi-Markov process is completely

defined by P and the sojourn distributions in F. After running T out to time t, the Markov

renewal process count ÑT(tk) and the E[ÑB(tk)] are calculated for the T and B models at the

time of the k-th transition (tk). For testing purposes, the transitions in the test model sample

run will determine the individual tk values. The observed covariance between States i and

j for the sample run becomes

O(Σi j(t))) =
1

k − 1

k∑
l=1

(NT,i(tl) − E(NB,i(tl))(NT, j(tl) − E(NB, j(tl)), (4.12)

where NT,i(tk) is the Markov renewal process count for the i-th state of the test model at

time tk and NB,i(tk) is the Markov renewal process count for the i-th state of the baseline
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Figure 4.4: GoF(t) distribution measures of central tendency and dispersion

model at time tk. The expected covariance matrix is still based solely on the baseline model

from Equation 3.2 and GoF(t) is found via Equation 4.10.

4.4.1 Simulation.

In this simulation, the baseline model consists of P defined in Equation 4.5 and the

sojourn distributions defined in Equation 4.6. There are four unique sojourn distributions

(Γ(2,2), Γ(2,1), Γ(0.5,4), and Γ(0.5,1)) which can be defined as a vector of α values

(2,2,0.5,0.5) and a vector of β values (2,1,4,1) respectively. For testing purposes, 6

additional α and β vectors were created which can be found in Table 4.1. The α2, α3, β2,

and β3 vectors contain large changes to the sojourn distributions that the GoF(t) metric
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should readily identify because the altered sojourn times will result in much higher or

much lower state visit counts than in the baseline model. The remaining vectors have

subtle sojourn distribution changes that are more difficult for the metric to identify because

the state visit counts will not be affected as much. Figure 4.5 illustrates how the sojourn

distributions change with the various parameterizations.

Table 4.1: Sojourn Distribution Parameters

α Vectors β Vectors

α1 (Baseline) (2,2,0.5,0.5) β1 (Baseline) (2,1,4,1)

α2 (4,4,1,1) β2 (4,2,8,2)

α3 (1,1,0.25,0.25) β3 (1,0.5,2,0.5)

α4 (4,2,0.5,0.5) β4 (4,1,4,1)

α5 (2,8,0.5,0.5) β5 (2,4,4,1)

α6 (2,2,5,0.5) β6 (2,1,40,1)

α7 (2,2,0.5,50) β7 (2,1,4,100)

Each combination of α- and β-vectors is examined by creating a model with those

specific parameters. Each test run simulates the model to t =1,000 time units. The test run

covariance matrix is created using the Markov renewal process counts of the test model,

the expected Markov renewal counts of the baseline model, and Equation 4.12 for each

transition in the test run. An expected covariance matrix is calculated using 500,000

iterations of the baseline model and the Covariance Simulation Algorithm described in

Section 3.1. The GoF(t) metric for the sample run is computed as in Equation 4.10. This

process is repeated for 5,000 iterations to build a distribution for the GoF(t) metric of the

test model versus the baseline model.
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Figure 4.5: Sojourn probability density function relationships

To establish rejection criteria, 100,000 iterations of the baseline model versus itself

were conducted with the upper 5% of the test statistic values considered as the rejection

region for the test. This rejection region establishes a type I error rate (incorrectly rejecting

a true model) of 0.05 for the test. Table 4.2 illustrates the type II error rates (incorrectly

failing to reject a false model) for the test model simulations. In this case, the α1-β1 entry

is the baseline model which will not have a type II error, but does have a type I error set

at 0.05. Of the other 48 test scenarios, 42 scenarios have type II error rates less than 0.05

and only 4 scenarios have type II error rates greater than 0.25. These 4 scenarios are the

α2 − β3 model, the α3 − β2 model, the α7 − β3 model, and the α7 − β7 model.
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Table 4.2: Model Type II Error Rates

α Vectors

β vectors α1 α2 α3 α4 α5 α6 α7

β1 0 0 0 0 0 0 0

β2 0 0 0.879 0 0 0 0

β3 0 0.973 0 0.002 0.0006 0.0004 0.666

β4 0.0002 0 0.041 0 0 0 0

β5 0 0 0.023 0 0 0 0

β6 0 0 0.068 0 0 0 0

β7 0.0026 0 0.252 0 0 0 0.062

Analyzing the effects of the α- and β-vectors explains the higher type II error rates

in the 4 non-baseline models. For the α3 − β2 model, the α-vector is exactly half the

baseline α-vector while the β-vector is exactly double the baseline β-vector. For these Γ-

distribution parameterizations, the means of the distributions equal αβ and the variances

equal αβ2. These parameterizations imply that the α1 − β1 and α3 − β2 models possess

identical sojourn distribution means but the α3−β2 model has twice the sojourn distribution

variances. The additional variance results in the lower type II error rate of 0.879 when

compared with the α2− β3 model’s type II error rate of 0.973. The α2− β3 model has half

the sojourn distribution variances compared with the baseline model while maintaining the

same means. In this case, the test model performs “better” than the true model in that fewer

model runs will be rejected even though the model is wrong.

The α7 − β3 and α3 − β7 models have type II error rates greater than 0.1 due to the

balance between the new parameterizations. The difference between these two models

and the baseline model is the Γ(0.5,1) distribution which becomes a Γ(50,0.5) distribution

with all other β values cut in half in the α7 − β3 model and a Γ(0.25,100) with all other

α values cut in half in the α3 − β7 model. This results in a larger mean and variance for
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one distribution (the Γ(50,0.5) in the α7 − β3 scenario and the Γ(0.25,100) in the α3 − β7

scenario) while the other three distributions from F in each respective scenario are reduced.

The typical run with either of these models has relatively few transitions due to the large

mean of the associated Γ-distribution. However, the reduced means and variances in the

other distributions counterbalance the more misspecified distribution.

Figure 4.6 shows the rejection probabilities for each test model versus the baseline

model over the time length of the test run. Most of the scenarios stabilize with rejection

rates above 0.9 by 200 to 500 time units. This equals a type II error of less than 0.1. The

baseline model plus the five test models discussed above correspond to the five lines that

remain below 0.9 all the way out to 1,000 time units. Naturally, a wide range of models

would perform similarly to the baseline model as illustrated by these test models.

Figure 4.6: Rejection percentages for various sojourn distributions over time
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In addition to the various sojourn distribution parameterizations, testing included a

variety of probability transition matrices. Appendix B contains the rejection percentage

matrices for seven additional P matrices. The end result is that this test is sensitive against

even slight changes to the probability transition matrix. Even the α1 − β1 parameterizations

have a much higher rejection rate when the various P matrices are used. In these cases,

the fact that the sojourn time distributions are identical is offset by the differences in

the transition probabilities. These differences result in highly altered sample paths that

are unlikely to be produced by the baseline model. In most of the cases, the α7 − β7

parameterization has a slightly lower rejection rate in the 80-90% range because the

misspecified Γ(50, 100) sojourn distribution reduces the Markov renewal process counts

to the point that the altered P is masked.

The reason that perturbations of P have such a profound effect, in most cases, on the

ability to distinguish between models is due to the portions of the covariance matrix that

are influenced by P. F effects the time between transitions. Suppose the distributions in F

were shifted along the x-axis so that their means were doubled. The impact of this change

would be to halve the Markov renewal process counts and expectations for a given time.

Ultimately, the model would behave similarly to the original model, it would just take

longer to transition. P effects the actual behavior of the model. For the baseline model,

doubling the probability of transitioning from State 1 to State 4 (from 0.25 to 0.5) would

also reduce the probability of transitioning from State 1 to State 2 (from 0.75 to 0.5). Not

only does this change alter the Markov renewal process counts and expectations, but it also

impacts the correlation matrix for the model by reducing the correlation among States 1 and

2 and increasing the correlation between States 1 and 4. For a given t, the new correlation

matrix results in a new covariance matrix as well since left hand side of Equation 3.13 has

changed.
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The GoF(t) metric developed in this chapter can detect differences between the

observed data and expected data for an underlying, hypothesized semi-Markov process.

The GoF(t) metric detected model differences in 92% of the models tested in this chapter.

A natural extension of this goodness of fit testing is to determine whether or not a potential

covariate has an impact on the hypothesized model. The next chapter examines covariate

detection which impacts data collection requirements and overall model definition.
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V. Testing a Semi-Markov Process for the Presence of Covariates

The GoF(t) metric developed in Chapter 4 can be used to determine whether or not

a significant covariate is present within a model. The process involves calculating two

GoF(t) metric values for a single observed data sample. The first GoF(t) value comes

from comparing the data to a model that contains the covariate and determining where

this GoF(t) value falls in the distribution of GoF(t) values for this covariate model. The

second GoF(t) value is created by comparing the data to a model that does not contain the

covariate and determining where this second GoF(t) value falls in the GoF(t) distribution of

the non-covariate model. The major difference between the models will be the state space

representations which will alter the expectations and covariance matrices used to create the

GoF(t) metric. The changes in the state space representation require the covariates to be

categorical rather than continuous, as a continuous covariate would result in an uncountably

infinite state space.

Before demonstrating the test for covariates, consider the baseline model to add

context. Suppose the four state model in Figure 4.1 tracks an individual as he or she

progresses through the various stages of a disease where State 1 = Healthy, State 2 =

Diseased, State 3 = Recovering, State 4 = Disease No Longer Present. In this scenario, the

Healthy State only occurs prior to an individual being diagnosed with the disease for the

first time. Any transitions back to the Healthy State from the other three states represent

the death of the current subject and the admission of a new subject into the system.

Within this scenario, the subject’s sex could be a covariate in the model as disease

progression may substantially vary between men and women. The eight state model in

Figure 5.1 represents a state space expansion to account for a subject’s sex. In the covariate

model, let State 1 = Healthy Female, State 2 = Diseased Female, State 3 = Recovering

Female, State 4 = Disease No Longer Present Female, State 5 = Healthy Male, State 6 =
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Diseased Male, State 7 = Recovering Male, State 8 = Disease No Longer Present Male.

The dotted arrows represent transitions when a subject dies and the next subject is of the

opposite sex. Effectively, there are two separate four-state models that are connected at

specific transition points.

Figure 5.1: The covariate baseline semi-Markov process connected graph

Ultimately, the state space changes required for the covariate model result in changes

to the transition probability matrix, the sojourn distribution matrix, and the kernel matrix.

Let π represent the probability that a given subject is covariate level 1 and 1-π represent

the probability that a subject is covariate level 2. The starting covariate model transition
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probability matrix for each state, si, in the covariate baseline, CB, model is

PCB =



S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

S 1 0 0.75 0 0.25 0 0 0 0

S 2 0.5π 0 0.5 0 0.5(1 − π) 0 0 0

S 3 0.25π 0.45 0 0.3 0.25(1 − π) 0 0 0

S 4 0.15π 0.35 0.5 0 0.15(1 − π) 0 0 0

S 5 0 0 0 0 0 0.75 0 0.25

S 6 0.5π 0 0 0 0.5(1 − π) 0 0.5 0

S 7 0.25π 0 0 0 0.25(1 − π) 0.45 0 0.3

S 8 0.15π 0 0 0 0.15(1 − π) 0.35 0.5 0



(5.1)

while the starting covariate model sojourn distribution matrix from the example for the CB

model is

FCB =



S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

S 1 0 F1 0 F1 0 0 0 0

S 2 F2 0 F3 0 F2 0 0 0

S 3 F4 F3 0 F1 F4 0 0 0

S 4 F3 F1 F2 0 F3 0 0 0

S 5 0 0 0 0 0 F1 0 F1

S 6 F2 0 0 0 F2 0 F3 0

S 7 F4 0 0 0 F4 F3 0 F1

S 8 F3 0 0 0 F3 F1 F2 0



, (5.2)

where F1 is a Γ(2,2), F2 is a Γ(2,1), F3 is a Γ(0.5,4), and F4 is a Γ(0.5,1). The CB subscript

for matrices is used to denote the covariate baseline model matrices as opposed to the

original matrices used in Chapter 4 and the si notation tracks the states of the covariate

model. The covariate baseline kernel matrix becomes

GCB =

A B

C D

 (5.3)
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where

A =



0 0.1875xe−
x
2 0 0.0625xe−

x
2

0.5πxe−x 0 1.7725x−0.5e−
x
4 0

0.8862πx−0.5e−x 1.5952x−0.5e−
x
4 0 0.075xe−

x
2

0.5317πx−0.5e−
x
4 0.0875xe−

x
2 0.5xe−x 0


,

B =



0 0 0 0

0.5(1 − π)xe−x 0 0 0

0.8862(1 − π)x−0.5e−x 0 0 0

0.5317(1 − π)x−0.5e−
x
4 0 0 0


,

C =



0 0 0 0

0.5πxe−x 0 0 0

0.8862πx−0.5e−x 0 0 0

0.5317πx−0.5e−
x
4 0 0 0


,

D =



0 0.1875xe−
x
2 0 0.0625xe−

x
2

0.5(1 − π)xe−x 0 1.7725x−0.5e−
x
4 0

0.8862(1 − π)x−0.5e−x 1.5952x−0.5e−
x
4 0 0.075xe−

x
2

0.5317(1 − π)x−0.5e−
x
4 0.0875xe−

x
2 0.5xe−x 0


.

A single observed data set can be tested against either a four-state model or an eight-

state model depending on whether or not the covariate is taken into account. Consider a test

run where four subjects are female, male, male, and female respectively. A potential sample

path given these four subjects appears in Table 5.1. If the covariate was insignificant, as is

the case with the covariate baseline model depicted above, data collected from the eight-

state model will pass the goodness of fit test for the four-state model once the data is

collapsed to four states. This will be demonstrated in Section 5.1.

40



Table 5.1: Example Markov Renewal Process Sample Paths

Four-state Eight-State

Markov Renewal Process Markov Renewal Process

Sample Path Sample Path

Subject Without Covariate With Covariate

1 1

1 2 2

3 3

1 5

2 4 8

2 6

1 5

3 2 6

3 7

1 1

4 4 4

3 3

A significant covariate would necessitate a change to at least one of the values or

distributions in the PCB or FCB matrices which also alters the GCB matrix. For testing

purposes, assume that the four-state baseline model does not change. This assumption

forces the covariate model changes to be balanced within the model. For instance, starting

with PCB, if the probability of going from State 5 to State 8 is changed to 0.5, then at least

one of the other transition probabilities in the State 5 row must change since rows must sum

to 1. Assume that the State 5 to State 6 transition probability also becomes 0.5 to satisfy

this constraint. In addition, the State 1 to State 2 and the State 1 to State 4 transitions would

change based on π so that their average transition probabilities when the covariate is not
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considered are 0.75 and 0.25 respectively. The new State 1 to State 2 and State 1 to State 4

transition probabilities for the eight-state model can be calculated by solving the following

series of equations:

0.75 = p12π + p56(1 − π) = p12 ∗ π + 0.5 ∗ (1 − π)

0.25 = p14π + p58(1 − π) = p14 ∗ π + 0.5 ∗ (1 − π)

1 = p12 + p14

0 ≤ p12, p14, p56, p58 ≤ 1

Generally, a covariate probability value π will either be known or assumed, as such, there

remain only three equations and two unknowns. This over-specified system of equations

limits the amount by which any of the individual probabilities in the PCB matrix may

change. In this case, assuming π = 0.5, then p12 = 1 and p14 = 0. If one tries to make the

State 5 to State 8 transition probability 0.6 then

0.75 = p12 ∗ 0.5 + 0.4 ∗ 0.5

0.25 = p14 ∗ 0.5 + 0.6 ∗ 0.5

1 = p12 + p14

implies p12 = 1.1 and p14 = −0.1. The probabilities greater than 1.0 and less than 0.0

violate the laws of probability which means this particular change to the State 5-State 8

transition cannot occur in this model.

Similarly, a change to one of the sojourn distributions forces at least one other sojourn

distribution to change if the covariate model is going to maintain balance with the smaller

baseline model. In this case, a balance exists between States 1 and 5 in the covariate model

versus State 1 in the baseline model. Additionally, States 2 and 6, States 3 and 7, and

States 4 and 8 in the covariate model are balanced with States 2, 3, and 4, respectively,

in the baseline model. This balance is based on the assumption that the original four-

state model provides an adequate fit of the data and that the larger covariate model is now
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under test. If the covariate model distributions were not balanced with their baseline model

counterparts, then the covariate model would reduce to a four state model that is not the

baseline model. This concept of balance is a function of artificial semi-Markov processes

used in this testing. In normal implementation, the data would dictate the model parameters

for both the covariate model and the reduced model.

To demonstrate the sojourn distribution balance, if the sojourn time for transitioning

from State 5 to State 8 followed a Γ(3,2) distribution, then the transition distribution from

State 1 to State 4 in the covariate model would also have to change to ensure the average

sojourn distribution between the two transitions remains a Γ(2,2) distribution which is the

sojourn distribution between States 1 and 4 in the baseline model. While there are a variety

of ways to balance the distributions, for simplicity, the distributional mean is being kept

consistent. In the case of a Γ(2,2) distribution changing to a Γ(3,2) distribution, the State

1 to State 4 sojourn distribution would become a Γ(1,2) distribution assuming π = 0.5.

Using this pair of distributions, the average of all State 1 to State 4 and all State 5 to

State 8 transitions is 4 time units, matching the original mean of the Γ(2,2) distribution.

This method does not maintain the distributional variance as the combination of the Γ(1,2)

distribution and the Γ(3,2) distribution has a variance of 12 while the original variance of

the Γ(2,2) distribution is 8. In reality, the sample data itself would be used to determine the

P and F matrices for the model with covariates and the model without covariates.

5.1 Covariate Testing

Once the two models (baseline and covariate) are selected, testing proceeds by

calculating the GoF(t) metric of the sample data for both models using the methods

outlined in Chapter 4. The GoF(t) values indicate whether or not either of the models

can be rejected as poor fits for the data. In the case where both models fail to reject, a

preference must be made with respect to either the larger covariate model or the model

without covariates. This decision is ultimately up to the modeler who must balance data
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collection requirements and computational complexity with the added model fidelity that

the covariates provide.

In this testing, the baseline four-state model from Chapter 4 is the model without

covariates and a suite of models with covariates was created to illustrate the ability of

the GoF(t) metric test to differentiate between the models. The first round of testing

demonstrates the equivalence between the four-state baseline model from Chapter 4 and

eight-state covariate baseline model defined by PCB and FCB. The testing involves drawing

N=5,000 iterations from the covariate baseline model using π = 0.5. The eight-state sample

paths are reduced down to four states by making all State 5 instances in the sample path

State 1’s, all State 6’s instances State 2’s, all State 7’s instances State 3’s, and all State

8’s instances State 4’s. This transition effectively ignores the potential presence of the

covariate. Ignoring the covariate, 4.58% of the runs are rejected based on their GoF(t)

metric values which is in line with the expected 5% that should be incorrectly rejected. For

all of the covariate testing, a type I error rate of 5% is used.

Ideally, any covariate model that is properly balanced with respect to a four-state

model will have a rejection rate around 5% when it is reduced to the four-state model

without covariates. The difference in models can be detected by comparing the larger

covariate models to one another. The first step is a demonstration that the baseline model

and covariate baseline model are equivalent to one another in the larger eight-state domain.

This round of testing draws N=5,000 iterations from the four-state baseline model with one

slight difference. Each time the simulation returns to State 1, signifying a new subject enters

the system, the simulation determines whether or not the new subject is male or female

according to covariate level probability, π. After the simulation concludes, the Markov

renewal process is expanded to eight states by making States 1, 2, 3, and 4 into States 5, 6,

7, and 8 if a particular subject is male. Note that for an assumed π = 0.5, pi j = p(i+4)( j+4) and

Fi j = F(i+4)( j+4) for 1 ≤ i, j ≤ 4. GoF(t) metric values are then calculated for the runs by
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comparing them directly with the eight-state covariate baseline model. In this case, 5.04%

of the samples are rejected which is in line with the expected 5% that should be incorrectly

rejected.

From this point forward, any potential covariate model is tested directly against the

covariate baseline model. The underlying analysis is that if the data is not significantly

different from the covariate baseline model, the proposed data model can be reduced down

to the four-state baseline model without losing any fidelity at the modeler’s discretion.

Practically, this means it is not necessary to track the presence of the covariate because it

does not actually add any additional information about the process.

Testing focused on two separate probability transition matrices, PC1 and PC2, and four

different sets of Gamma-distribution parameters, α2−β2, α3−β3, α4−β4, and α5−β5. The

first probability transition matrix,

PC1 =



S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

S 1 0 1 0 0 0 0 0 0

S 2 0.5π 0 0.5 0 0.5(1 − π) 0 0 0

S 3 0.25π 0.45 0 0.3 0.25(1 − π) 0 0 0

S 4 0.15π 0.35 0.5 0 0.15(1 − π) 0 0 0

S 5 0 0 0 0 0 0.5 0 0.5

S 6 0.5π 0 0 0 0.5(1 − π) 0 0.5 0

S 7 0.25π 0 0 0 0.25(1 − π) 0.45 0 03

S 8 0.15π 0 0 0 0.15(1 − π) 0.35 05 0



, (5.4)
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represents a drastic change in comparison with the covariate baseline model for the

probability transitions of States 1 and 5. The second probability transition matrix,

PC2 =



S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

S 1 0 0.875 0 0.125 0 0 0 0

S 2 0.5π 0 0.5 0 0.5(1 − π) 0 0 0

S 3 0.25π 0.45 0 0.3 0.25(1 − π) 0 0 0

S 4 0.15π 0.35 0.5 0 0.15(1 − π) 0 0 0

S 5 0 0 0 0 0 0.625 0 0.375

S 6 0.5π 0 0 0 0.5(1 − π) 0 0.5 0

S 7 0.25π 0 0 0 0.25(1 − π) 0.45 0 03

S 8 0.15π 0 0 0 0.15(1 − π) 0.35 05 0



, (5.5)

represents a smaller change for the probability transitions of States 1 and 5. For the Γ-

distribution parameters, let the upper and lower halves of the FCB matrix each have four

separate distributions (Γ(2,2), Γ(2,1), Γ(0.5,4), Γ(0.5,1)). Following the notation used in

Section 4.4.1, define a vector of α and β values for all eight states as (2,2,0.5,0.5,2,2,0.5,0.5)

and (2,1,4,1,2,1,4,1) respectively. Table 5.2 shows the original baseline α and β vectors and

the four additional sets of vectors tested. Of the four test vectors, the first three only change

a single pair of α or β values, while the fourth set represents a more drastic change across

all distributions. The distributions were selected to balance the baseline distributions with

respect to the combined average of each pair of sojourn distributions when compared with

the same pair in the covariate baseline model. Basically, the average among all State 1 to

State 2 transitions and all State 5 to State 6 transitions is the same whether the covariate

baseline vectors or any of the four additional vector pairs are used. The need to maintain

this balance eliminates the need to run the combinatorial analysis with every P − α − β

permutation as seen in Chapter 4.
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Table 5.2: Covariate Sojourn Distribution Parameters

α Vectors β Vectors

α1 (Baseline) (2,2,0.5,0.5,2,2,0.5,0.5) β1 (Baseline) (2,1,4,1,2,1,4,1)

α2 (3,2,0.5,0.5,1,2,0.5,0.5) β2 (2,1,4,1,2,1,4,1)

α3 (2,2,0.5,0.5,2,2,0.5,0.5) β3 (2,1,1,1,2,1,7,1)

α4 (60,2,0.5,0.5,0.1,2,0.5,0.5) β4 (0.1,1,4,1,20,1,4,1)

α5 (3,1,1,0.25,3,3.5,0.5,0.75) β5 (1,0.5,3,0.25,1.67,1,2,1.25)

Comparing the PC1α1β1 model to the baseline covariate model (PCBα1β1), the type

II error rate is 0.499 while the PC2α1β1 model has a type II error rate of 0.891 when

compared with the baseline covariate model. The disparity in type II error rates is expected

because the PC1α1β1 model represents a larger change to P than the PC2α1β1 model. For the

PCBα2β2, PCBα3β3, PCBα4β4, and PCBα5β5 models, the type II error rates when compared

with the baseline covariate model are 0.934, 0.933, 0.392, and 0.948, respectively. Figure

5.2 shows the various distributions used in the covariate baseline model and the PCBα2β2

and PCBα3β3 models. In both graphs, the solid line represents the distribution used in the

covariate baseline model while the two dashed lines represent the balanced distributions

from the test models. The large degree of overlap among the various distributions results

makes it impossible for the GoF(t) metric to discern between these models. On the other

hand, the distributions used in the PCBα4β4 model differ significantly from the covariate

baseline model as illustrated in Figure 5.3. These differences are picked up in over 60% of

the models tested.

While it may appear that covariate testing lacks power to differentiate between models

based on some of the scenarios, the reality is that it can detect significant differences such

those shown in Figure 5.3. The scenarios used in this chapter were specifically crafted to

ensure the average across the covariate would collapse down to the baseline model. The
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Figure 5.2: Distributions from the baseline covariate, α2β2, and α3β3 models

Figure 5.3: Distributions from the baseline covariate and α4β4 models

end result in several scenarios was a small enough difference that the covariate proved

insignificant. For an actual data sample, the baseline and covariate models would be

dictated by the sample and the underlying theory which results in more realistic differences
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between models. To this end, the next chapter examines a real world application of the

GoF(t) metric with an emphasis on covariate detection.
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VI. BMI Model Analysis

According to the Centers of Disease Control and Prevention (CDC) website [24],

childhood obesity affects 17% of US children between the ages of 2 and 19, with 20.5%

of US children between the ages of the 12 and 19 considered obese as of 2011 based on

Body Mass Index (BMI). Effectively, one out of every five American teenagers is above

the 95th percentile of their BMI-for-age growth chart. A recent study using regression

techniques [25] concluded that obesity trends began rising in the 1980s while a study

using prevalence rates [26] identified an increasing trend over a span of merely four years.

Previous studies have drawn correlations between childhood obesity and various childhood

and adult afflictions including heart disease [27] and diabetes [28]. Due to these life-

threatening potential consequences, many social initiatives have started in recent years

targeting poor dieting and lack of exercise, two of the primary causal factors in childhood

obesity according to the CDC.

Whether it is the National Football League’s Play 60 exercise campaign or the

Healthy, Hunger-Free Kids Act (the school lunch reform initiative championed by First

Lady Michelle Obama), analysts and policy makers require robust tools to determine

if the various initiatives are impacting the childhood obesity rates. Quickly identifying

improvements in obesity rates can lead to increased focus and funding for current

initiatives, while identifying a lack of improvement can result in renewed efforts to create

new initiatives to combat obesity. However, the community requires a tool that can

differentiate between improving obesity rates, stagnating obesity rates, escalating obesity

rates and spurious fluctuations in the data or noise that can lead to false conclusions. To this

end, the GoF(t) metric outlined in Equation 4.3 can help determine the tempo of current

childhood BMI trends. While the aforementioned studies focus on whether or not the

obesity trends appear to be changing over time, the GoF(t) metric can help determine
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whether the changes are possibly random noise, merely a consistency in association, versus

a true population shift.

Data from the Fels Longitudinal Study, which contains the age and BMI values for

children from the 1930s to the present, was examined to explore the population trends and

transitions to obesity in children over time. This data consisted of repeated measurements

of 1146 children (583 boys and 563 girls) at 6 month intervals from age 2 through age 19 for

a total of 10,771 boy observations and 10,434 girl observations. On average, the boys spent

11.27 years in the study while the girls spent 11.38 years in the study. Details regarding the

history and methods of the Fels Longitudinal Study can be found in Roche [29]. Based on

the BMI-for-age growth charts and the traditional BMI-based categories of Underweight

(less than the 5th percentile), Normal (5th to 85th percentile), Overweight (85th to 95th

percentile), and Obese (greater than the 95th percentile), each child is tracked as he or she

transitions from one category to the next. Figure 6.1 shows a simple state model of the four

BMI-based categories. The solid arrows represent moving among adjoining states while

the dashed arrows indicate a jump of two or more states.

Figure 6.1: Four state weight classification model

While skipping a state generally does not occur in real life without extenuating factors

like weight loss surgery or growth hormones, the modeling procedure and the six month
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(discrete time) intervals in data collection allow this phenomenon to occur in this model.

For this model, a child enters the system at the category of their first data measurement.

The model changes states when the child’s category changes, as calculated from subsequent

measurements. After the child’s final visit, a new child enters the system at his or her

current category state and the system proceeds. If the new child’s starting state is the

same as the previous child’s ending state, the system will continue accruing time in that

particular state without transitioning. In the data set, this occurs 227 times among boys and

197 times among girls. On the other hand, if the new child starts as Underweight and the

previous child ended up as Obese, the system would undergo a transition from Obese to

Underweight, skipping Overweight and Normal weight in the process. If a child only had

one measurement, that child was removed from further analysis.

Based on the observation time frames of the children, two separate models were

created from the dataset. The 1930-1960 Model includes all of the measurements prior

to 1960 and the 1980-2007 Model contains every measurement after 1979. In the 1930-

1960 Model,

P1930−1960Model =



UW N OW O

UW 0 0.992 0.008 0

N 0.338 0 0.622 0.040

OW 0.007 0.850 0 0.143

O 0.019 0.264 0.717 0


(6.1)
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and

F1930−1960Model =



UW N OW O

UW 0 Γ(0.36, 4.82) Γ(0.20, 4.00) 0

N Γ(0.41, 15.77) 0 Γ(0.43, 19.38) Γ(0.69, 7.66)

OW Γ(0.20, 4.00) Γ(0.60, 1.91) 0 Γ(1.75, 1.02)

O Γ(0.20, 4.00) Γ(0.40, 4.98) Γ(0.40, 2.92) 0


,

(6.2)

where UW is Underweight, N is Normal, OW is Overweight, and O is Obese. For the

1980-2007 Model,

P1980−2007Model =



UW N OW O

UW 0 0.969 0.031 0

N 0.364 0 0.547 0.089

OW 0.016 0.607 0 0.377

O 0.032 0.411 0.557 0


(6.3)

and

F1980−2007Model =



UW N OW O

UW 0 Γ(0.76, 2.80) Γ(0.25, 5.00) 0

N Γ(0.45, 19.90) 0 Γ(0.66, 17.82) Γ(1.51, 8.34)

OW Γ(0.20, 4.00) Γ(1.08, 1.62) 0 Γ(1.42, 1.44)

O Γ(0.64, 8.58) Γ(1.09, 3.40) Γ(0.87, 2.34) 0


.

(6.4)

From a modeling standpoint, the impact of increasing obesity rates would be most

noticeable in two main places, the last column of P and the last row of F. The final P

column contains the probabilities of transitioning into the Obese category from one of the

other categories. If obesity rates increase, one or more of these transition probabilities
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could increase which would indicate that a higher portion of the population reaches the

Obese state. Meanwhile, the bottom row of F contains the distributions of the sojourn

times for the system to leave the Obese state once it arrives there. Increases in sojourn

times for the Obese state would indicate that the average child that enters this state spends

longer there and that there is a greater chance for the next child to enter the system in the

Obese category which would not require a state change.

Comparing the two models above, the probability of reaching the Obese state is lowest

for the 1930-1960 Model and highest for the 1980-2007 Model. From Table 6.1, the 1980-

2007 Model has the largest average sojourn times for every state. Figure 6.2 shows the

difference in the sojourn time distribution going from State 2 to State 4 in the two models.

The 1930-1960 Model has typically shorter sojourn times for this transition when compared

with the 1980-2007 Model. Taken together, the 1980-2007 Model implies that a larger

portion of the child population reaches the Obese category and on average stays there for

a longer period of time. The larger question is whether the differences in the models are

significant. The 1930-1960 and 1980-2007 Models were tested against each other after

t=1000 person years, approximately 5 actual years of data collection. For this study, a

person year is the collective amount of time the study participants age during observation

which is indicative of the number of measurements recorded. For instance, tracking 20

individuals for 5 years would contribute 100 person years to the study which corresponds

to approximately 200 individual measurements. The data set contained 1146 children and

12,980 person years. The 1930-1960 Model has a type II error of 0.441 against the 1980-

2007 Model. This type II error rate deceases to 0.01 after 2000 person years (roughly

10 years of data collection). The actual 1930-1960 data sample is also rejected against

the 1980-2007 Model. The 1980-2007 Model has a type II error rate of 0.076 against the

1930-1960 Model after 1000 person years and the actual 1980-2007 data sample is rejected

when compared with the 1930-1960 Model.
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Figure 6.2: 1930-1960 F24 distribution versus the 1980-2007 F24 distribution

Table 6.1: Average State Sojourn Time (Years)

1930-1960 Model 1980-2007 Model

Underweight 1.72 2.10

Normal 7.58 10.81

Overweight 1.23 1.85

Obese 1.38 2.83

The disparity in the type II error rates is due to the behavior of the GoF(t) metric

distribution for the two model comparisons. Specifically, over 40% of the 1930-1960

Model GoF(t) metric values still appear to be from the 1980-2007 Model. In these cases,

there are enough visits to the Overweight and Obese States to mimic the 1980-2007 Model

behavior. As t increases, the 1930-1960 Model GoF(t) metric distribution separates itself
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from the 1980-2007 Model GoF(t) metric distribution and the type II error rate decreases

to 0.01. The bottom line is there exists strong evidence that the underlying BMI model has

changed significantly from the mid-1900s to the late-1900s.

It is worth noting that the changing P and F matrices between the 1930-1960 Model

and the 1980-2007 Model offer a stark contrast with the matrices from the scenarios in

Chapter 5. While the individual changes to P and F are relatively small between the two

BMI models, the cumulative effect is two models that are relatively easy to distinguish

between. In the Chapter 5 scenarios, each test model was carefully created to ensure a

balance with respect to the baseline model, with the added result that competing models

were often difficult to differentiate between. This is a case where the real data example

proved to be an easier demonstration of the GoF(t) metric than the simulated scenario, but

simplifying assumptions regarding the modeling of transitions between states from child

to child affect the results. Further model refinement would be necessary to remove these

effects entirely for less biased estimates of the transition probabilities and distributions

between these two cohorts of children.

For analysts and policy-makers the utility of this goodness of fit metric comes from

the ability to determine if a data sample could be the product of a given model. In the

case of childhood obesity, the metric can test whether current obesity trends differ from

previous generations. Suppose analysts are interested in the effectiveness of Play 60, the

Healthy, Hunger-Free Kids Act, and all of the other recent programs targeting obesity. After

collecting five years worth of pediatric visits for a group of patients, the summary statistics

can tell whether the obesity rates are decreasing. However, comparing this data to the 1980-

2007 Model can tell whether there is an actual change in population behavior that warrants

a new model, or if the current trends are merely the product of the stochastic noise that is

expected based on the 1980-2007 Model. In the former case, policy-makers may elect to

continue with the current activities, while large-scale program changes may be warranted
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in the later case. In either scenario, policy-makers have an improved grasp of what the

current trends mean with respect to the previous childhood obesity model behavior.
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VII. Conclusion

Assessing the fit of a multi-state model with respect to the observed data used to create

the model is an important step in the diagnostics phase of modeling. Previous diagnostics

tools using prevalence counts and Chi-squared goodness of fit metrics tended to possess

limited utility when compared with the wide range of models and data collection techniques

used. The Goodness of Fit metric outlined in this dissertation has been shown to overcome

the limitations of previously available diagnostic tools by providing a straightforward

method of relating the observed data directly to a hypothesized multi-state model.

While validating the goodness of fit for a model is an important diagnostic step,

deciding among competing models is the ultimate goal of model building with respect

to providing a decision maker with the best possible information. To this end, this work

illustrates how models that contain covariate factors can be tested against one another to

determine which model best represents the true observed data. Proper model selection can

impact model size, model complexity, and data collection efforts which in turn can have a

profound impact on the time required to analyze a particular model.

Future work may explore the impact of sojourn distributions that lack a linear Laplace

transformation function. In these cases, the Laplace transform inversion technique used

to calculate expected values becomes a numerical integration of a numerical integration

of a function rather than the single numerical integration of a function demonstrated in

this work. Additionally, more work is required in fitting the tails of the GoF(T ) metric’s

distribution with respect to the transformed Chi-squared distribution. The ability to test an

observed data sample against a theoretical distribution rather than a simulated distribution

would greatly reduce the computational workload in determining whether or not a model

is likely to produce an observation.

58



Appendix A: Markov Renewal Process Moments

The covariance calculations in Chapter 3 require the expected value and variance of a

Markov renewal process at a specific time, t. The following is a derivation of both values

in the transform domain based on the generating function

Ψz = 1 − (1 − z)(I − q)−1q[zI + (1 − z) d{(I − q)−1} ]−1, (A.1)

defined by Pyke in Corollary 5.1 [15]. In this case, z is a random value between 0 and 1

and q = q(t) = P ◦ d
dt F(t). Pyke uses Ψz to derive L(E[Ñ(t)]) in Theorem 5.2 [15]. Below

is a derivation of L(E[Ñ(t)]), L(E[Ñ(t)2]), and Var[Ñ(t)].

L(E[Ñ(t)]) =
∂

∂z
Ψz

∣∣∣∣∣
z=1
.

Consider

∂

∂z
Ψz =

∂

∂z
1 − (1 − z)(I − q)−1q[zI + (1 − z) d{(I − q)−1} ]−1.

Let c = d{(I − q)−1} , then

∂

∂z
Ψz = (I − q)−1q[zI + (1 − z)c]−1 − (1 − z)(I − q)−1q(−1)∗

[zI + (1 − z)c]−1[I − c][zI + (1 − z)c]−1.

= (I − q)−1q[zI + (1 − z)c]−1 + (1 − z)(I − q)−1q[zI + (1 − z)c]−1∗

[I − c][zI + (1 − z)c]−1 and

L(E[Ñ(t)]) = (I − q)−1q[zI + (1 − z)c]−1 + (1 − z)(I − q)−1q[zI + (1 − z)c]−1∗

[I − c][zI + (1 − z)c]−1
∣∣∣
z=1
.

= (I − q)−1q.

(A.2)
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L(E[Ñ(t)2]) =
∂2

∂z2 Ψz

∣∣∣∣∣∣
z=1

+
∂

∂z
Ψz

∣∣∣∣∣
z=1
.

∂2

∂z2 Ψz =
∂

∂z
(I − q)−1q[zI + (1 − z)c]−1 + (1 − z)(I − q)−1q∗

[zI + (1 − z)c]−1[I − c][zI + (1 − z)c]−1.

= (−1)(I − q)−1q[zI + (1 − z)c]−1(I − c)[zI + (1 − z)c]−1−

(I − q)−1q[zI + (1 − z)c]−1[I − c][zI + (1 − z)c]−1+

(1 − z)(I − q)−1q(−1)[zI + (1 − z)c]−1[I − c][zI + (1 − z)c]−1∗

[I − c][zI + (1 − z)c]−1 + (1 − z)(I − q)−1q[zI + (1 − z)c]−1∗

[I − c](−1)[zI + (1 − z)c]−1[I − c][zI + (1 − z)c]−1.

= −2(I − q)−1q[zI + (1 − z)c]−1(I − c)[zI + (1 − z)c]−1−

2(1 − z)(I − q)−1q[zI + (1 − z)c]−1[I − c][zI + (1 − z)c]−1∗

[I − c][zI + (1 − z)c]−1, then

∂2

∂z2 Ψz

∣∣∣∣∣∣
z=1

= −2(I − q)−1q[zI + (1 − z)c]−1(I − c)[zI + (1 − z)c]−1−

2(1 − z)(I − q)−1q[zI + (1 − z)c]−1[I − c][zI + (1 − z)c]−1∗

[I − c][zI + (1 − z)c]−1
∣∣∣
z=1
.

= −2(I − q)−1q(I − c).

L(E[Ñ(t)2]) = −2(I − q)−1q(I − c) + (I − q)−1q.

Var[Ñ(t)] = L−1(E[Ñ(t)2]) −
(
L−1(E[Ñ(t)])

)2
.
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Appendix B: Probability Transition Matrix Test Results

Using the test construct from Chapter 4, GoF(t) metric tests utilizing differing P-

matrices were also conducted. Each table below corresponds to one of seven P-matrices.

P1 =



0 0.75 0 0.25

0.5 0 0.5 0

0.25 0.45 0 0.3

0.15 0.35 0.5 0


(B.1)

P2 =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


(B.2)

P3 =



0 0.65 0.10 0.25

0.4 0 0.4 0.2

0.25 0.45 0 0.3

0.15 0.35 0.5 0


(B.3)

P4 =



0 0.25 0 0.75

0.5 0 0.5 0

0.45 0.25 0 0.3

0.5 0.35 0.15 0


(B.4)

P5 =



0 0.15 0 0.85

0.5 0 0.5 0

0.25 0.45 0 0.3

0.15 0.35 0.5 0


(B.5)
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P6 =



0 0.75 0 0.25

0.05 0 0.95 0

0.25 0.45 0 0.3

0.15 0.35 0.5 0


(B.6)

P7 =



0 0.75 0 0.25

0.5 0 0.5 0

0.75 0.15 0 0.1

0.15 0.35 0.5 0


(B.7)

P8 =



0 0.75 0 0.25

0.5 0 0.5 0

0.25 0.45 0 0.3

0.145 0.85 0.005 0


(B.8)

Table B.1: Type II Error For P2

α Vectors

β vectors α1 α2 α3 α4 α5 α6 α7

β1 0 0 0 0 0 0 0

β2 0 0 0 0 0 0 0

β3 0 0 0 0 0 0 0

β4 0 0 0 0 0 0 0

β5 0 0 0 0 0 0 0

β6 0 0 0 0 0 0 0

β7 0 0 0 0 0 0 0
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Table B.2: Type II Error For P3

α Vectors

β vectors α1 α2 α3 α4 α5 α6 α7

β1 0.154 0 0 0 0 0 0

β2 0 0 0.128 0 0 0 0

β3 0 0.148 0 0 0 0.0006 0

β4 0.0002 0 0 0 0 0 0

β5 0.0002 0 0 0 0 0 0

β6 0 0 0.046 0 0 0 0

β7 0 0 0.017 0 0 0 0.137

Table B.3: Type II Error For P4

α Vectors

β vectors α1 α2 α3 α4 α5 α6 α7

β1 0 0 0 0 0 0 0

β2 0 0 0 0 0 0 0

β3 0 0 0 0 0 0 0

β4 0 0 0 0 0 0 0

β5 0 0 0 0 0 0 0

β6 0 0 0 0 0 0 0

β7 0 0 0 0 0 0 0.113
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Table B.4: Type II Error For P5

α Vectors

β vectors α1 α2 α3 α4 α5 α6 α7

β1 0 0 0 0 0 0 0

β2 0 0 0 0 0 0 0

β3 0 0 0 0 0 0 0

β4 0 0 0 0 0 0 0

β5 0 0 0 0 0 0 0

β6 0 0 0 0 0 0 0

β7 0 0 0 0 0 0 0.070

Table B.5: Type II Error For P6

α Vectors

β vectors α1 α2 α3 α4 α5 α6 α7

β1 0 0 0 0 0 0 0

β2 0 0 0 0 0 0 0

β3 0 0 0 0 0 0 0

β4 0 0 0 0 0 0 0

β5 0 0 0 0 0 0 0

β6 0 0 0 0 0 0 0

β7 0 0 0 0 0 0 0.063
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Table B.6: Type II Error For P7

α Vectors

β vectors α1 α2 α3 α4 α5 α6 α7

β1 0.006 0 0 0 0 0 0

β2 0 0 0.005 0 0 0 0

β3 0 0.007 0 0 0 0 0

β4 0 0 0 0 0 0 0

β5 0 0 0 0 0 0 0

β6 0 0 0.007 0 0 0 0

β7 0 0 0.003 0 0 0 0.190

Table B.7: Type II Error For P8

α Vectors

β vectors α1 α2 α3 α4 α5 α6 α7

β1 0.532 0 0 0 0 0 0

β2 0 0 0.453 0 0 0 0

β3 0 0.589 0 0.004 0 0 0.346

β4 0 0 0.042 0 0 0 0

β5 0 0 0 0 0 0 0

β6 0 0 0.020 0 0 0 0

β7 0.0004 0 0.100 0 0 0 0.070
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14. ABSTRACT
Due to the versatility of its structure, the semi-Markov process is a powerful modeling tool used to describe complex
systems. Though similar in structure to continuous time Markov chains, semi-Markov processes allow for any transition
time distribution which enables these processes to fit a wider range of problems than the continuous time Markov chain.
While semi-Markov processes have been applied in fields as varied as biostatistics and finance, there does not exist a
theoretically-based, systematic method to determine if a semi-Markov process accurately fits the underlying data used
to create the model.
In fields such as regression and analysis of variance, the quality of the predictive model is judged in part by the goodness
of fit of the model which relates the expected observation values with the actual observations. A similar methodology for
semi-Markov processes would provide immediate insight in the efficacy of the fitted model and would allow competing
models to be directly compared with one another.
This dissertation presents a methodology to measure the adequacy of a fitted semi-Markov process. To this end, a
technique to assess the likelihood that a data sample could be generated by a specific semi-Markov process is developed,
including a newly proposed goodness of fit metric. This technique relies on the covariance structure of the semi-Markov
process; thus, a method to estimate the covariance structure is also proposed. The technique is applied to real and
simulated data to demonstrate the goodness of fit metric’s utility in model validation and its ability to identify potential
covariate factors within the model.
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